Am. ]J. Hum. Genet. 69:179-190, 2001

A Survey of Affected-Sibship Statistics for Nonparametric Linkage Analysis
Haydar Sengul, Daniel E. Weeks, and Eleanor Feingold

Department of Human Genetics, University of Pittsburgh, Pittsburgh

We have compared the power of a large number of allele-sharing statistics for “nonparametric” linkage analysis
with affected sibships. Our rationale was that there is an extensive literature comparing statistics for sibling pairs
but that there has not been much guidance on how to choose statistics for studies that include sibships of various
sizes. We concentrated on statistics that can be described as assigning scores to each identity-by-descent—sharing
configuration that a pedigree might take on (Whittemore and Halpern 1994). We considered sibships of sizes two
through five, 27 different genetic models, and varying recombination fractions between the marker and the trait
locus. We tried to identify statistics whose power was robust over a wide variety of models. We found that the
statistic that is probably used most often in such studies—S,,—performs quite well, although it is not necessarily
the best. We also found several other statistics (such as the R criterion, S, .., and the Sobel-and-Lange statistic
C) that perform well in most situations, a few (such as S ,,.,, and the Feingold-and-Siegmund version of S_,,.) that
have high power only in very special situations, and a few (such as S ..., the N criterion, and the Sobel-and-Lange
statistic B) that seem to have low power for the majority of the trait models. For the most part, the same statistics
performed well for all sibship sizes. We also used our results to give some suggestions regarding how to weight
sibships of different sizes, in forming an overall statistic.

Introduction

During the past decade there has been a dramatic in-
crease in the number of studies searching for genes in-
fluencing susceptibility to complex diseases. Such studies
have involved many different laboratory technologies,
study designs, and statistical tools. One of the most im-
portant statistical tools has been “nonparametric” link-
age analysis methods, which base statistical inference on
allele-sharing statistics for affected pedigree members. A
particularly important class of allele-sharing statistics is
that outlined by Whittemore and Halpern (1994). This
very general class includes any statistic based on a scor-
ing function, S, that assigns a score to each possible
identity by descent (IBD)-sharing configuration, ¢, that
a pedigree can take on. For a single pedigree, the allele-
sharing statistic is written as I,P(¢|marker data)S(¢).
This raw statistic for each pedigree is normalized by
subtracting the null-hypothesis (no linkage) mean of
each statistic and dividing by the null-hypothesis SD.
The normalized statistics are summed over pedigrees,
and the sum is asymptotically normally distributed un-
der the null hypothesis of no linkage under reasonable
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regularity conditions. Statistics of this form have been
particularly important in nonparametric linkage analy-
sis, for a number of reasons. On the theoretical side,
they are attractive because they are very flexible and
because they correctly treat the whole pedigree (rather
than a relative pair) as the sampling unit. On the prac-
tical side, these statistics are appealing because they sep-
arate the calculation of the IBD sharing from the cal-
culation of the statistic. This allows one to estimate the
IBD sharing by computationally quite-intensive methods
(e.g., see Kruglyak et al. 1996; Sobel and Lange 1996)
and then to trivially take those IBD-sharing estimates
and score them in various ways, to compute different
sharing statistics.

Whittemore and Halpern (1994) discussed two scor-
ing functions, S, and S,, (for descriptions, see table
1), both of which can be applied to any type of pedigree.
However, a large proportion (arguably most) of the al-
lele-sharing statistics from the literature, both preceding
1994 and since then, can also be written in the form
described above. There are statistics that apply only to
sibling pairs, statistics that can be applied to sibships
of arbitrary size, and statistics that can be applied to
general pedigrees. For example, the most commonly
used statistic for sibling pairs, the mean sharing statistic,
is of this form. The score for a sibling pair is the sum
of the probability that the pair shares two alleles IBD
plus half of the probability that the pair shares one allele
IBD. Scoring functions that apply to sibships of arbi-
trary size have been discussed by, for example, Green
and Woodrow (1977) and Abel et al. (1998). The lit-
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Table 2
IBD-Sharing Configurations
Label Configuration
Two siblings:
1 (13 13)
2 (13 14)
3 (13 24)
Three siblings:
1 (13 13 13)
2 (13 13 14)
3a (13 13 24)
3b (13 14 23)
Four siblings:
1 (13 13 13 13)
2 (13 13 13 14)
3 (13 13 14 14)
4a (13 13 13 24)
4b (13 13 14 23)
N (13 13 14 24)
6a (13 13 24 24)
6b (13 14 23 24)
Five siblings:
1 1313131313
2 13131313 14
3 131313 14 14
4a 13131313 24
4b 131313 14 23

( )
( )
( )
( )
( )
Sa (13 13 13 14 24)
( )
( )
( )
( )

5b 1313141423
6a 1313132424
6b 1313 14 24 24
6¢ 13131423 24

erature also now contains a number of general-pedigree
scoring functions beyond S, and S,;. These were re-
viewed recently by McPeek (1999). It should also be
noted that any sib-pair scoring function can be extended
to larger sibships or even to general pedigrees, by adding
it over all affected relative pairs in the pedigree. Such
an “all pairs” statistic is still of the Whittemore-and-
Halpern form if it is normalized on a pedigree-wise basis
rather than on a pairwise basis. Indeed, S, is con-
structed in this way from the mean sharing statistic.
Quite a bit of literature has compared the power of
various scoring functions for sib pairs (e.g., see Black-
welder and Elston 1985; Knapp et al. 1994; Davis and
Weeks 1997; Feingold and Siegmund 1997; Whittemore
and Tu 1998). A few papers have covered the other end
of the spectrum, comparing general pedigree scoring
functions (e.g., see Krugylak et al. 1996; McPeek 1999;
Feingold et al. 2000). In this article, we address the
intermediate question of which scoring functions are the
best for affected sibships of various sizes. Some previous
studies (e.g., see Davis and Weeks 1997; Abel et al.
1998; Abreu et al. 1999) have investigated statistics for
sibships, although for somewhat different types of sta-
tistics than those which we consider. In addition, most
of these previous power analyses calculated power for
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mixtures of sibships of different sizes. This is a very
useful approach, but it is also important to look at
sibships of different sizes separately, to find out which
scoring functions are the best for each sibship size. In
theory, a linkage study need not use the same scoring
function for each sibship size; doing so is a matter of
convenience (no software package that we are aware of
currently allows the user to specify different scoring
functions for different types of pedigrees), but there is
no statistical reason why it must be done that way.

We have done a literature survey and have extracted
most of the statistics of the Whittemore-and-Halpern
type that can be applied to sibships, including general-
pedigree scoring functions, sibship scoring functions,
and sib-pair scoring functions (used over all pairs). We
studied the power of these statistics for sibships of sizes
two through five. We judged affected sibships of sizes
greater than five to be relatively unimportant for com-
plex-trait mapping. Our goal was to find scoring func-
tions whose power is robust over a wide variety of trait
models, since, in a typical complex trait-mapping sit-
uation, there is not much knowledge of the trait model.
We considered 27 models, including dominant, additive,
and recessive models, with full and incomplete pene-
trance and with varying phenocopy rates. All of our
models are single-gene models, although we considered
fairly high phenocopy rates, which can be thought of
as including heterogeneity effects and which also ap-
proximate certain interaction models that produce small
marginal effects. We computed power for a test of a
single marker, with varying recombination fractions be-
tween the marker and the trait locus. All of our com-
putations assumed perfect IBD information at the
marker. The effect of this assumption is addressed in
the Methods and Discussion sections.

Of course, given good statistics for each sibship size,
one still needs to know how to weight sibships of dif-
ferent sizes to combine them. The search for good
weights is conceptually very similar to the search for
good statistics for a given sibship size. For any trait

Table 3
Normalized Sibship Statistics, for Two Affected
Siblings
NORMALIZED COEFFICIENT
FOR CONFIGURATION

StatisTic 1 (21BD) 2 (11BD) 3 (0 IBD)
R criterion® 1.41 .00 —1.41
S+L B 58 58 -1.73

vseno 1.73 -.58 -.58
F+S 1.67 -.33 —1.00
ldom(.1) 1.14 23 -1.61
ldom(.01) .86 42 -1.70

* For two siblings, the R criterion, the N crite-
rion, S .., STL C, S, p4om» and S, are all equivalent.

5 Ypairsy
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Table 4
Normalized Sibship Statistics, for Three Affected Siblings

NORMALIZED COEFFICIENT
FOR CONFIGURATION

STATISTIC 1 2 3a 3b

R criterion® 2.45 .82 —.82 —.82
S+L B 1.13 1.13 —.88 —.88
S sgeno 2.25 .54 .54 -1.18
F+S 2.89 .58 -.19 -.96
Idom(.1) 1.79 .99 —.62 -.98
Idom(.01) 1.46 1.07 -.77 -.93

* For three siblings, the R criterion, the N criterion, S ;., S+L

C, S,opdom> and S, are all equivalent.

pairs?

model, one can derive the optimal statistic for each sib-
ship size and the optimal weights for combining sibships
of different sizes. Since we do not expect to know the
trait model, we want to find statistics and weights whose
power is robust over a variety of models. The issue of
weights for pedigrees of different sizes has been ad-
dressed, for pairwise statistics, by an enormous number
of authors (e.g., Suarez and Hodge 1979; Sham et al.
1997; Abel et al. 1998; Greenwood and Bull 1999; Hol-
mans 2001), and, for pedigree-wise statistics, by a few
(e.g., Krugylak et al. 1996; Teng and Siegmund 1997;
Abel et al. 1998; McPeek 1999). We comment on the
weighting issue in the Discussion section, but it is not
the main focus of this article.

Methods

Table 1 lists the statistics that we considered in this study.
Groups of statistics that are analytically equivalent up
to linear transformations are condensed into single list-
ings. In table 1, all references to matching or counting
of alleles or genotypes refer to IBD, not to identity by
state. We enumerated the IBD-sharing configurations in
each sibship, as shown in table 2, labeling the genotypes
of the mother and father as “12” and “34,” respectively.
This is the same notation used by Whittemore and Hal-
pern (1994). The IBD-sharing configurations are listed
from highest-order IBD sharing to lowest-order IBD
sharing; by the terms “higher-order” and “lower-order”
sharing we mean to indicate generally greater and lesser
sharing, although this ordering is not precise, since there
are different ways to quantify IBD sharing.

To understand both the similarities and the differ-
ences among the statistics, we considered how each sta-
tistic scores each possible IBD-sharing configuration.
Since additive and multiplicative constants are irrele-
vant to the definitions of the statistics, we can scale the
scores for each statistic, to make comparisons among
them easier. Tables 3—6 show the scaled scores for all
the statistics of interest. They were scaled for each sib-
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ship size by subtracting the null hypothesis (i.e., no link-
age) mean of each statistic and dividing by the null
hypothesis SD. This normalization allows us to directly
compare how the different statistics score each IBD-
sharing configuration—and thus allows us to make in-
ferences about their power in different situations. A
negative value assigned to any configuration means ev-
idence against linkage.

To find the power of each statistic under various ge-
netic models, we first calculated the probability of each
IBD-sharing configuration, k, under the alternative hy-
pothesis, conditional on having #n affected siblings, as

P(k|n affected siblings)

_ P(n affected siblings|k)P(k)
3 P(n affected siblings|;)P(j) ’

(1)

where j and k are any IBD-sharing configuration in sib-
ships of a given size (see table 2). The probabilities P(k)
are just the null-hypothesis probabilities. The condi-
tional probability P(n affected siblings |[IBD configura-
tion k) can be written as

P(n affected siblings| k)

_ P(n affected siblings, k)
- P(k)

> P(n affected siblings, k | mating type)P(mating type)
mating type
P(k)

2 P(mating type)P(n affected siblings|k,mating type) .

mating type

For the case of no recombination (§ = 0) between the
marker and the trait locus, we computed these proba-
bilities analytically and then checked our equations by
using MENDEL (Lange et al. 1988) to compute the
conditional probabilities P (n affected siblings |IBD con-

Table 5
Normalized Sibship Statistics, for Four Affected Siblings

NORMALIZED COEFFICIENT FOR CONFIGURATION

STATISTIC 1 2 3 4a 4b N 6a 6b

R criterion 3.74 1.60 1.60 —-.53 -.53 —-.53 -.53 -.53
N criterion 2.67 1.60 .53 .53 53 =53 —-1.60 —-1.60
S pairs 346 1.73 1.15 .00 .00 -.58 —-1.15 -1.15
S+L C 3.60 1.72 130 -.16 —-.16 —-.57 -.99 -.99
S obdom 3.70 1.68 1.45 —-.30 -.30 —-.57 -.80 —.80
S 3.68 1.71 129 -25 —-11 -.58 -.91 -1.00
S+L B 1.50 1.50 1.50 —-.15 —-.15 -.15 -1.81 -1.81
S sgeno 2,67 1.15 1.15 1.15 —-42 -42 1.15 1.15
F+S 4.08 1.63 .82 .82 —-.27 —-.54 -27 -1.36
ldom(.1) 2.57 1.69 169 —-.09 -.53 —-53 -.09 -1.08
Idom(.01) 2.22 1.76 1.76 —-.36 —.54 —-.54 -36 —.82
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Table 6
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Normalized Sibship Statistics, for Five Affected Siblings

NORMALIZED COEFFICIENT FOR CONFIGURATION

STATISTIC 1 2 3 4a 4b Sa Sb 6a 6b 6¢

R criterion  5.47 2.56 256 —-.37 -37 -37 -.37 -.37 -.37 -.37
N criterion  3.63 2.47 1.31 1.31 1.31 15 A5 —-1.02  —-1.02 -1.02
S pairs 446 2.69 1.78 .87 .87 .01 .01 -.90 -.90 -.90
S+L C 4.83 274 2.01 .66 66 —.08 —.08 -.81 -.81 -.81
S obdom 533 2.72 237 12 A2 —-24  -24 -.59 -.59 -.59
S 527 2.80 2.07 .32 S6 —.17 -0 -.70 -.70 -.77
S+L B 1.92 192 1.92 41 41 41 41 -110 -1.10 -1.10
S geno 3.15 1.63 1.63 1.63 .07 .07 .07 1.63 .07 —1.45
F+S 526 274 1.47 1.92 .65 21 =.23 21 —-.61 —1.05
Idom(.1) 3.58 251 251 33 =21 =21 =21 .33 -.21 —-.88
Idom(.01) 3.17 264 264 -—-.06 -29 -29 -.29 -.06 -.29 —.63

figuration k). For the values § = .05, .10, and .20, we
also computed these conditional probabilities by using
MENDEL. Including 6 values that are >0 is important
because, in a real study, it is unlikely that the gene would
be in complete linkage with a marker. Furthermore, in
a real study, one would not have perfect IBD infor-
mation, and the effect of reduced IBD information is

very similar to the effect of increased distance between
the gene and the marker. In the Discussion section, we
comment on this issue further.

These probabilities in equation (1) above depend on
the genetic model as defined by the allele frequency g
and the penetrances f,, f,, and f;. We considered 27
models, which are listed in table 7. In table 7, K is the

Table 7

Genetic Models

Model q fi f f A Description

K=.1:
1 .0513  .0000 1.0000 1.0 5.4 Dominant, no phenocopies, full penetrance
2 .0267 .0500 1.0000 1.0 3.2 Dominant, half of cases are phenocopies
3 .1056  .0000 .5000 .5 2.9  Dominant, reduced penetrance
4 .1000  .0000 .5000 1.0 3.2 Additive, no phenocopies, full penetrance
5 .1000  .0500 .5000 1.0 2.9  Additive, half of cases are phenocopies
6 .2000  .0000 2500 .5 2.0 Additive, reduced penetrance
7 3162 .0000 .0000 1.0 3.2 Recessive, no phenocopies, full penetrance
8 2294 .0500 .0500 1.0 1.8  Recessive, half of cases are phenocopies
9 4472 .0000 .0000 5 2.2 Recessive, reduced penetrance

K = .01:
10 .0050 .0000 1.0000 1.0 50.4  Dominant, no phenocopies, full penetrance
11 .0025 .0050 1.0000 1.0 25.7 Dominant, half of cases are phenocopies
12 .0101  .0000 .5000 5 25.4  Dominant, reduced penetrance
13 .0100  .0000 .5000 1.0 25.8  Additive, no phenocopies, full penetrance
14 .0100 .0050 .5000 1.0 25.3  Additive, half of cases are phenocopies
15 .0200  .0000 2500 .5 13.3  Additive, reduced penetrance
16 .1000  .0000 .0000 1.0 10.0  Recessive, no phenocopies, full penetrance
17 .0709  .0050 .0050 1.0 4.3 Recessive, half of cases are phenocopies
18 .1414  .0000 .0000 5 7.1  Recessive, reduced penetrance
= .001:
19 .0005 .0000 1.0000 1.0 500.4 Dominant, no phenocopies, full penetrance
20 .0003 .0005 1.0000 1.0 250.7 Dominant, half of cases are phenocopies
21 .0010 .0000 .5000 .5 2504 Dominant, reduced penetrance
22 .0010  .0000 5000 1.0 250.7  Additive, no phenocopies, full penetrance
23 .0010  .0005 5000 1.0 250.3  Additive, half of cases are phenocopies
24 .0020  .0000 2500 .5 125.8 Additive, reduced penetrance
25 .0316 .0000 .0000 1.0 31.6  Recessive, no phenocopies, full penetrance
26 .0224  .0005 .0005 1.0 11.9  Recessive, half of cases are phenocopies
27 .0447  .0000 .0000 .5 22.4  Recessive, reduced penetrance
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Table 8

Approximate Sample Sizes, for Two Affected Siblings

NoO. OF FAMILIES®

MODEL R criterion® S+L B S,., F+S Idom(.1) ldom(.01)
Dominant:
1 42 55 70 51 41 45
2 60 82 100 73 61 67
3 64 91 101 75 65 73
Additive:
4 61 81 103 74 61 67
5 112 155 182 133 114 127
6 120 167 195 142 122 137
Recessive:
7 27 64 29 26 32 42
8 39 110 37 34 49 68
9 51 105 60 51 59 74

* Sample sizes that are underlined are the minima for the model.
® For two siblings, the R criterion, the N criterion, § S+L C,
S.obdoms and S, are all equivalent.

pairss

population prevalence of the disease, and A, is the risk
ratio to offspring, defined as the recurrence risk divided
by the population prevalence (Risch 1990). Models 1-9
all give a disease prevalence of 10%. They include three
dominant, three additive, and three recessive models.
Each group of three models consists of a full-pene-
trance—no-phenocopies model, a model with pheno-
copies, and a model with reduced penetrance. Models
10-18 repeat the same pattern for a disease prevalence
of 1%, and models 19-27 do the same for a disease
prevalence of 0.1%. We consider models 1-9 to be the
most relevant to complex-trait mapping, and we present
results primarily for those models. The other models
were investigated in order to get a more complete un-
derstanding of the effects that allele frequency has on
our results.

For each statistic and each model, we used the con-
ditional IBD probabilities described above to compute
the sample size (number of sibships of a given size)
needed to obtain 80% power with a significance level
of .001, using the Z-test. The formula that we used is

sample size = (2,0, + zﬁ‘71)z/(l~‘«1 — o),

where g, and o, are the SDs of the statistic under the
null and alternative hypotheses, respectively, and where
uo and u, are the corresponding means. We used z, =
3.09 and z, = 0.84. We note that this assumes nor-
mality of the statistics but does take account of the fact
that they might have different variances under the null
and alternative hypotheses. By computing power ana-
lytically under the assumption of normality, we fail to
account for the fact that some statistics will have skewed
distributions for modest sample sizes and thus will have
higher power. However, since that higher power is ac-
companied by higher false-positive rates, we feel that

Am. ]J. Hum. Genet. 69:179-190, 2001

the analytical calculation provides a more appropriate
comparison. In a sense, the “fairest” power comparison
would be a simulation study using empirical significance
cutoffs, but, since empirical cutoffs are seldom used in
real studies, it is not clear that such an approach has
much more relevance than the much-simpler normality-
based comparisons. This issue has also been discussed
theoretically by McPeek (1999), and the results of Davis
and Weeks (1997) give some indications of how large
the effect of the skewness is on the false-positive rates
and on the power of some of the statistics.

Results

As indicated in table 1, several groups of statistics are
analytically equivalent over all sibship sizes (including
sizes larger than five). The R criterion (Green and Wood-
row 1977), Sobel and Lange’s (1996) statistic A, and
recessive LOD scores with penetrance vector (.00, .00,
.50) form one such group and are referred to by the label
“the R criterion” for the remainder of this paper. The
N criterion (Green and Woodrow 1977) and the paren-
tal-allele-difference statistic (Abel et al. 1998) form a
second group, and we refer to them by the label “the N
criterion.” ;.. (Whittemore and Halpern 1994) and
Sobel and Lange’s (1996) statistic D form a third group,
referred to as “S,,;..” Furthermore, there are additional
equivalencies within the smaller sibship sizes. These can
be seen clearly in tables 3-6. For example, table 3 shows
that the R criterion, N criterion, S, StL C, S, paom»
and S, statistics are all equivalent for a sibship of size
two.

Tables 3-6 also show some basic differences among
the statistics. For two siblings, the R criterion, which is
the usual mean sharing statistic, considers IBD sharing

Table 9
Approximate Sample Sizes, for Three Affected Siblings

NoO. OF FAMILIES®

MODEL R criterion” S+L B S, F+S Idom(.1) Idom(.01)
Dominant:
1 19 20 28 22 18 19
2 21 22 32 2§ 20 21
3 35 38 50 39 35 36
Additive:
4 35 37 54 41 35 36
N 41 45 65 48 41 42
6 78 87 124 91 80 83
Recessive:
7 22 34 31 23 26 29
8 20 32 25 19 23 27
9 49 68 71 51 56 60

* Sample sizes that are underlined are the minima for the model.
® For three siblings, the R criterion, the N criterion, S S+L C,
S.obdoms and Sy, are all equivalent.

pairs?
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Table 10

Approximate Sample Sizes, for Four Affected Siblings

185

NoO. OF FAMILIES*

MODEL R criterion N criterion S, StLC  Sopiom Su StLB S, F+S Idom(.1) Idom(.01)
Dominant:
1 14 24 15 14 14 14 18 21 17 13 13
2 13 19 13 13 12 13 16 20 15 ) 12
3 31 52 34 32 31 32 41 44 36 30 30
Additive:
4 31 43 32 31 31 31 39 49 37 32 32
5 29 37 28 28 28 28 34 4 3 29 29
6 78 97 75 74 74 73 93 118 85 78 79
Recessive:
7 29 51 33 31 29 31 49 50 34 33 33
8 20 29 21 20 19 20 32 30 21 22 23
9 70 128 80 74 71 74 114 126 86 78 78

* Sample sizes that are underlined are the minima for the model.

of one allele to be neutral and derives its linkage in-
formation from the relative frequencies of pairs sharing
zero and two alleles IBD. This characterization of the
mean sharing statistic is fairly well known, but table 3
also allows us to see how the other statistics compare
to that. For example, S .., and F+S, statistics that were
developed with recessive models in mind, both give neg-
ative scores to IBD sharing of one, and we can see that
S 4geno SCOTEs it more negatively than does F+S, sug-
gesting that it is a more “recessive” statistic. We can
also see surprisingly large differences in the normalized
coefficients for the two dominant LOD scores, sug-
gesting that there might be nontrivial power differences
between them. For three siblings (table 4), similar pat-
terns are discernible; note that only one statistic, S ;.05
considers configuration 3a (13 13 24) as providing ev-
idence in favor of linkage. For sibships of sizes four and
five (tables 5 and 6), we can see that there is quite a
broad range of statistics. One important way to char-
acterize this range is in terms of how high a score each

Table 11

Approximate Sample Sizes, for Five Affected Siblings

statistic gives to the lower-order-IBD-sharing configu-
rations. For example, considering table 5, we see that
the R criterion is the most extreme in this sense, giving
positive scores only to the top three sharing configu-
rations and quite negative scores to all the other con-
figurations. It is followed, roughly in this order, by S,
doms Sa STL C, and S, each of which gives
progressively higher scores to configurations 4a and 4b
(table 5). The dominant LOD scores are somewhat sim-
ilar to the R criterion, except that they, unlike the sta-
tistics just listed (except S,;), distinguish between con-
figurations 4a and 4b and between configurations 6a
and 6b. Similar patterns are seen in table 6. We might
expect that statistics, such as the R criterion, that give
high scores only to very-high-IBD-sharing configura-
tions will be most powerful for simple genetic models
and small values of g. When phenocopy rates are high
and/or the marker is farther from the trait locus, we
expect that the average IBD sharing will be less, and
thus we might get more power from statistics that give

NoO. OF FAMILIES®

MODEL R criterion N criterion  S,,. S+LC  S,um Sa StLB  S,., F+S Idom(.1) Ildom(.01)
Dominant:
1 13 24 17 15 13 15 21 22 19 13 13
2 10 15 12 11 0 10 14 16 13 10 10
3 35 61 45 40 36 38 54 53 46 34 34
Additive:
4 36 40 34 33 33 32 42 53 39 35 35
5 28 29 25 24 25 24 30 40 29 27 27
6 94 90 79 78 81 77 98 127 90 88 90
Recessive:
7 46 92 64 56 48 53 91 101 69 52 50
8 26 41 31 29 26 28 45 49 33 29 29
9 117 245 168 146 123 137 233 269 183 134 127

* Sample sizes that are underlined are the minima for the model.
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Table 12
Approximate Sample Sizes, for Two Affected Siblings,
for 6 =0
No. oF FAMILIES*
6 R criterion” Idom(.1) ldom(.01)
Model 3:
.00 64 65 73
.05 99 102 116
.10 160 166 189
.20 514 537 614
Model 6:
.00 120 122 137
.05 185 190 214
.10 298 308 349
.20 950 992 1,131
Model 9:
.00 51 59 74
.05 79 89 111
.10 128 142 173
.20 407 442 525

* Sample sizes that are underlined are the minima for
the model.

® For two siblings, the R criterion, the N criterion, S
S+L G, § , and S, are all equivalent.

pairsy

robdom!

somewhat stronger scores to lower-order—IBD-sharing
configurations.

Tables 8-11 show our detailed sample sizes for mod-
els 1-9 (the models with population trait frequency [K]
of 10%) for a recombination fraction (#) of 0. The sam-
ple sizes underlined in these tables are the minima for
each model specified.

Table 8 shows that, for the families with two siblings,
the R criterion and ldom(.1) are more powerful than
the remaining statistics, under dominant and additive
models. Under recessive models, F+S and the R crite-
rion are the most powerful statistics. Overall, the R
criterion seems to be the most robust statistic, approx-
imately equaling the power of the best statistic(s) for
each trait model. The S+L B and §,,,.,, statistics are
fairly suboptimal over almost all models. These results
also hold true for the rarer-trait models, which we have
not shown in detail, except that, for very-rare recessive
traits, S ..., and F+S are the best statistics.

Table 9 shows that, for the families of three siblings,
all the statistics except S .., and F+§ perform almost
the same under dominant and additive models. For
dominant and additive models with reduced penetrance
(i.e., models 3 and 6), the S+L B statistic does not
perform as well as those best statistics. For the recessive
models, F+S and the R criterion are better than the
other statistics. Overall, as in the case of families with
two siblings, the R criterion appears to be the most
robust statistic, having close to the best power for each
model. These results also hold true for the rare-trait
models that we have not shown in detail, except that
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F+S is the most powerful statistic for rare-recessive-trait
models. For three siblings, S ..., is not as good as most
other statistics, for rare recessive traits.

Table 10 shows that, for all dominant and additive
models, all the statistics except the N criterion, S+L B,
S_4geno> and F+S perform almost the same for the families
with four siblings. Under the recessive models, the N
criterion, S+L B, and S, do not perform as well as
the other statistics. S, .4, also performs well under the
recessive models. As K decreases, under many domi-
nant, additive, and recessive models, the R criterion,
SH+L C, S.vdoms Sai» and both ldom statistics perform
almost the same. Again, the R criterion appears to have
the most robust power overall. Results for rarer-trait
models are similar, except that, for rare-recessive-trait
models, F+S is no longer any better than the R criterion.

Table 11 shows that, under dominant models, the R
criterion, S, 4om> and both Idom statistics perform better
than the other statistics, for the families with five sib-
lings. Under additive models, S+L C, S, ,4om> and S, are
better than the other statistics. For the recessive models,
the R criterion and S, statistics do perform better
than the other statistics. In general, the R criterion, S,
toms> and both ldom statistics perform well for dominant
and additive models. Overall, results for families with
five siblings are very similar to those for families with
four siblings.

Tables 12-15 show selected sample sizes for the cases
in which 0 >0, as well as for the cases in which 6 =
0. The sample sizes underlined in these tables are also

Table 13

Approximate Sample Sizes, for Three Affected
Siblings, for 6 = 0

No. OF FAMILIES?

0 R criterion® ldom(.1) ldom(.01)

Model 3:

.00 35 35 36

05 54 54 56

.10 87 88 91

.20 272 281 291
Model 6:

.00 78 80 83

05 120 123 127

.10 191 198 204

.20 598 626 646
Model 9:

.00 49 56 60

05 74 83 90

.10 118 131 140

.20 368 399 420

* Sample sizes that are underlined are the min-
ima for the model.

" For three siblings, the R criterion, the N cri-
terion, S, STL C, S, pgom and S, are all
equivalent.
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Table 14
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Approximate Sample Sizes, for Four Affected Siblings, for 6 = 0

NoO. OF FAMILIES?

0 R criterion S pairs S+L C S, obdom S ldom(.1) ldom(.01)

Model 3:

.00 31 34 32 31 32 30 30

05 49 51 49 48 49 48 48

.10 81 81 79 78 79 80 81

.20 267 250 247 251 248 265 268
Model 6:

.00 78 75 74 74 73 78 79

.05 120 113 112 113 111 121 122

10 194 179 178 181 178 195 197

.20 620 554 555 571 555 621 630
Model 9:

.00 70 80 74 71 74 78 78

05 110 119 113 110 113 120 121

.10 182 188 181 178 181 195 197

.20 605 577 568 573 568 631 638

* Sample sizes that are underlined are the minima for the model.

the minima for each model specified. For clarity, we
show results only for a few representative models and
for the better-performing statistics. Not surprisingly, the
sample sizes necessary in the case of § > 0 increase sub-
stantially over those necessary in the case of 6§ = 0.
There are also some important differences in which of
the statistics have highest power. As predicted, there is
a shift, in power, from the R criterion to some of the
statistics—such as S+L C, S, and S, .—that give
higher scores to lower-order-IBD-sharing configura-
tions. This effect is minor for § = .05 but is quite sub-
stantial for & = .20. The dominant LOD scores also lose
power, relative to the other scoring functions, when
6 > 0. The statistics that perform uniformly poorly when
6 = 0 continue to do so when 6 > 0.

Table 15

Discussion

We have compared the power of a large number of scor-
ing functions for construction of allele-sharing statistics
for affected sibships. Perhaps the most important result
is that the scoring function that is most often used for
such studies, S,,, performs very well; for almost all of
the situations that we examined, it has power at or near
the maximum. We found the R criterion to be somewhat
better when 8 = 0, but, for slightly larger values of 6,
S5 Seondoms and S+L C all did as well as the R criterion.
For very large values of 0, these other statistics did better
than the R criterion, and S, also did well. The differ-
ence in our results as 6 varies suggests that one might
actually want to choose one’s statistic on the basis of

Approximate Sample Sizes, for Five Affected Siblings, for = 0

NoO. OF FAMILIES?

0 R criterion S pairs S+L C S, obdom S Idom(.1) ldom(.01)
Model 3:
.00 35 45 40 36 38 34 34
.05 59 66 61 57 60 57 57
.10 102 104 98 95 96 97 98
.20 370 317 308 320 309 344 351
Model 6:
.00 94 79 78 81 77 88 90
.05 147 119 117 125 117 137 141
.10 241 188 186 201 187 223 230
.20 791 577 578 641 585 724 748
Model 9:
.00 117 168 146 123 137 134 127
.05 198 250 224 198 213 218 209
.10 349 392 361 335 349 371 361
20 1,319 1,201 1,153 1,167 1,142 1,315 1,310

* Sample sizes that are underlined are the minima for the model.
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study design and marker informativeness. We considered
a fully informative marker, but, if the marker is not fully
informative, the result is very similar to that of increasing
6—that is, a degradation of the IBD information and an
increase in the frequency of sibships with lower-or-
der-IBD-sharing configurations. In a typical situation,
say a genome scan with 10-cM spacing and moderately
informative markers, it might be reasonable to take our
results for § = .05 as most realistic. In that case, our
results suggest that any of the statistics R criterion, S+L
C, S., and S, 4om would perform close to equivalently.
The R criterion might have a slight edge, but the others
are more readily available in software. However, if one
were using very uninformative markers or, more likely,
using siblings without parental genotypes, the quality of
the IBD information might be substantially degraded. In
that case, our results for larger values of § would be
more relevant. Our results show that S+L Cis generally
the best scoring function when § = .20 but that S,; and
S,airs perform only slightly worse. It seems likely that, if
the marker spacing and/or quality of the IBD informa-
tion were even worse than that in any of our scenarios,
S, Would be a good choice, since it scores the lesser
IBD-sharing configurations slightly higher than does
S+L C.

The recessive LOD-score statistics, being equivalent
to the R criterion, did surprisingly well over all models.
This is consistent with the results reported by Davis and
Weeks (1997), who observed that the SIBPAIR program
of J. Terwilliger (Satsangi et al. 1996), which computes
a LOD score under a recessive model, was quite pow-
erful for sibships of mixed size, over a range of multilo-
cus genetic models. The dominant LOD-score statistics
that we examined were reasonably powerful for dom-
inant and additive models, predictably doing best in the
cases in which the trait model was close to the model
under which the LOD score was calculated. However,
even for the dominant and additive models, the domi-
nant LOD-score statistics did not have power higher
than that of some of the other statistics (e.g., the R
criterion) that also performed well for recessive models.
Thus we do not endorse the dominant LOD scores as
among the most robust choices. We should note that
we do not consider these results to be a full comparison
of “parametric” and “nonparametric” approaches,
since we considered only the LOD scores at § = 0 and
since we did not consider unaffected individuals in any
of the pedigrees studied. Our intent was primarily to
evaluate the LOD scores as scoring functions within the
context of a nonparametric analysis. Both Abreu et al.
(1999) and Sham et al. (2000) recently looked at para-
metric and nonparametric approaches for complex
traits on small pedigrees. It is difficult, however, to com-
pare our results to theirs (or theirs to each other), be-
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cause of major differences in the types of parametric
analyses used.

A few of the scoring functions that we evaluated can-
not be recommended for any situation. S,,.,,, the N
criterion, and S+L B had consistently poor performance
over all models, with the single exception that S.
was powerful for rare recessive traits in sib pairs.

We have described most of our results in terms of
which statistics had robust power over many models.
We should reiterate that the exception to the robustness
was always the rare-recessive-trait models (models
25-27). This issue was discussed in greater depth (with
a focus on sib pairs) by Blackwelder and Elston (1985)
and Feingold and Siegmund (1997). For rare-recessive-
trait models, most of the commonly used statistics do
not have good power, and special recessively oriented
statistics do much better. “Rare recessive” in this case
means any trait caused by recessive action of a rare
allele. The disease itself need not be rare—for example,
in the case of heterogeneity or phenocopies. This special
property of rare recessive loci holds only when the allele
acts close to purely recessively, and it does not usually
hold when there is any amount of heterozygote disad-
vantage. Thus we feel that using a statistic that is known
to work well for all but the rare-recessive-trait case is
a good general strategy for complex-trait mapping.
However, investigators should be aware that, if they are
actually looking at something that is likely to be due to
a rare recessive allele, they should not be using these
general-purpose statistics. The F+S statistic that we
have evaluated here is an “all pairs” version of a statistic
proposed by Feingold and Siegmund (1997) for sibling
pairs. The sibling-pair statistic was designed to have
robust power for both rare-recessive-trait and other
models. Our results here show that it does indeed per-
form quite well for sibling pairs and trios, having, for
rare-recessive-trait models, the best power of all the sta-
tistics and, for other models, power only slightly lower
than that of the best statistics (especially when 6 > 0).
However, this performance did not hold up for sibships
of sizes four and five. This is probably due to the lim-
itations of the “all pairs” form, which tends to give high
scores to lower-order-IBD-sharing configurations. It is
possible that a different adaptation of the statistic pro-
posed by Feingold and Siegmund (1997) could do bet-
ter—for example, by using the scores that our F+S sta-
tistic gives to the higher-order—IBD-sharing configu-
rations but arbitrarily lowering the scores for the lower-
order-IBD-sharing configurations to something like
what S, uses.

We do not feel the need to recommend a strategy of
using different statistics for different sibship sizes, be-
cause we did not find large differences with respect to
which statistics are best for different sibship sizes. For
sibships of sizes two and three, most of the statistics

#geno
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that performed best are equivalent, and the results for
sibships of sizes four and five were similar to each other.
However, our results are restricted to sibships. It is not
necessarily true that the statistics that are best for sib-
ships would be best for extended pedigrees. The liter-
ature comparing general-pedigree statistics (e.g., see
Kruglyak et al. 1996; Davis and Weeks 1997; McPeek
1999; Feingold et al. 2000) has, in general, found S,
to be very good for most models, but this result does
depend on the type of pedigree. Davis et al. (1997)
found that, in situations in which the disease allele is
likely to have entered the pedigree more than once (e.g.,
a recessive disease with a fairly common allele), S,
does much better than S,,,. Additionally, McPeek (1999)
found S, .4, to be very powerful for a pedigree con-
sisting of a sib pair with an affected parent.

Finally, although we have dealt primarily with the
issue of which statistic(s) is best for each sibship size,
our results also shed some light on the relative value of
sibships of different sizes. We found, similarly to pre-
vious studies (e.g., Sham et al. 1997; McPeek 1999;
Holmans 2001), that larger affected sibships are not
necessarily as powerful as one might expect. For the
rare-allele models that we examined (i.e., models
19-24), sibships of sizes three, four, and five were
roughly equal to 3, 5, and 10-15 sibling pairs, respec-
tively; but, for the more common-allele additive and
dominant models (i.e., models 1-6), the sibships of sizes
three, four, and five were all worth approximately two
sibling pairs. For the common recessive models (i.e.,
models 7-9), which have the highest allele frequencies,
sibships of sizes four and five were worth considerably
less than a sibling pair. On the surface, this observation
seems to conflict with the common wisdom that larger
pedigrees are much more powerful than small ones, but
the explanation is that, under many models, a large
number of affecteds in a sibship indicates multiple cop-
ies of the disease allele, which decreases power. Thus a
large extended pedigree should, in fact, have higher
power than does a small pedigree, although a pedigree
with an unusually large percentage of affecteds might
suffer from the same power loss that we see for large
affected sibships. All of these results assume that there
is no information or selection based on parental pheno-
types. If one were, for example, to eliminate pedigrees
with two affected parents, then the relative value of
large sibships would increase.

The relative values of the sibships of different sizes
translate directly into recommended weights for com-
bining them in an overall statistic. Since the optimal
weights depend on the trait model, we again favor an
approach of trying to find weights that seem robust over
a variety of models. Clearly, however, this is a difficult
task, since we see such a broad range of relative values
for the different-sized sibships. McPeek (1999) noted
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this problem as well. The literature on pairwise statistics
has a long history of examining the weighting question,
and a number of authors (e.g., Abel et al. 1998; Hol-
mans 2001) have found high power, for a variety of
models, for the so-called 2/N weighting scheme origi-
nally proposed by Suarez and Hodge (1979). This
scheme equates a sibship of size N with N — 1 sibling
pairs, which is certainly within the range of what our
results suggest. If it is assumed that a typical nuclear-
family study will consist of a large number of affected
sib pairs, a somewhat smaller number of trios, and rel-
atively few larger sibships, then it is really the weight
given to sib trios that is most important. Essentially all
of the studies described above, including our own, put
that weight in a range of 2-3; this suggests that a good
robust statistic could be formed by weighting a sib trio
as 2.5 sib pairs and assigning larger sibships almost any
reasonable weight.

Finally, we remind the reader that the results pre-
sented here are analytical and are based on normality
assumptions (which are satisfied if the number of fam-
ilies is large enough). The analytical approach also im-
plicitly assumes that P values for the statistics are com-
puted accurately. In real use, statistics with skewed
distributions will have higher false-positive rates and
higher apparent power. In addition, accurate P-value
computation can be computationally intensive, and so,
in their P-value computations, some software packages
take shortcuts that may result in conservative P values;
use of conservative P values may result in power lower
than that which we have presented here. Thus, when
one actually applies these statistics to real data, one
must be cautious about the potential limitations of the
software implementations. For example, GENEHUNT-
ER (Kruglyak et al. 1996) uses a perfect-data approx-
imation to compute P values that can be quite conser-
vative (as clearly described by those authors). Similarly,
SimWalk2 (Sobel and Lange 1996) currently uses sim-
ulation on underlying inheritance vectors to generate P
values that may be conservative, depending on the level
of marker informativity. Caveat emptor.
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